Assessment and Mitigation of Ground Motion Hazards from Induced Seismicity

Gail M. Atkinson (with acknowledgement to many collaborators, especially Ghofrani and Assatourians) NSERC/TransAlta/Nanometrics Research Chair in Hazards from Induced Seismicity

Schatzalp Workshop, March 2017

Overview

- Goal: assess and manage induced seismicity hazard, especially for low probabilities of interest to critical structures
 - Focus on lateral hydraulic fracture wells (HF wells) in western Canada
- Key points
 - How to assess hazard (and what drives it)
 - How to mitigate hazard (by reducing likelihood of damaging motions to achieve targets)
 - Role of monitoring in hazard mitigation
- Conclusions

Assessing Earthquake Hazard (using probabilistic methods -achieve reliability target) Buildings: withstand motions that have a likelihood of 2% in 50 years. Critical facilities (i.e. major dams): withstand motions that have a likelihood of less than 1/10,000 per year (1% in 100 years)

What drives hazard from induced events?

- 1. Likelihood of initiating a sequence (of **M**>3)
- 2. Productivity parameters for sequences
 - More productive sequences will have higher likelihood of a potentially damaging event (Gutenberg-Richter relation: 100 M3+, 10 M4+, 1 M5+)
 - Maximum and minimum magnitude
- 3. Ground motions from induced events, as a function of magnitude and distance
- 4. Uncertainties in all of the above
- Lets go through a hazard exercise in which we consider these 3 key factors (and their uncertainty).
- Example for Fox Creek (small town in Alberta, Canada)

1. Likelihood of activation ($M \ge 3$): 0.01 to 0.03, per cell of 10 km radius (for cells with active HF wells) (averaged over a wide area; likelihood will vary greatly according to many risk factors)

Induced seismicity patterns for cells of 10 km radius. Dark grey cells had HF treatments (active cells). Likelihood of seismicity of $M \ge 3$ being spatially and temporally associated with either hydraulic fracturing (HF), disposal(D), or the combination of HF and disposal (HF+D) is indicated by shading. (from Ghofrani and Atkinson, 2016)₆

2. Productivity: Magnitude distribution for induced events, showing event rates vs. M (normalized to area of ~32,000 km²) (area around Fox Creek) - follows Gutenberg-Richter relation with b~1

Magnitude-recurrence stats for Fox Creek area (box~160 km x 200 km). Red circles show avg. rates p.a. in Fox Creek over last 3 years. Red lines show expected rates based on 10-km cell activation probability for **M**3 of 0.01, 0.03, 0.1. Purple lines show natural seismicity rates in North American craton.

All rates normalized to same area, per annum.

Rates are very low for large events..... but probably non-zero

Maximum magnitude (Mx) of Gutenberg Richter relation Does not appear to be controlled by volume injected. Physically, the maximum event will be limited by available fault size.... Is there a statistical predictive parameter for maximum events?

Relationship between injected volume and maximum observed magnitude. Squares show data from HF wells in western Canada oil/gas regions, from Atkinson et al., 2016. Other symbols and line are data and proposed relation of McGarr.

What controls maximum magnitude (Mx)?

Maximum observed magnitudes are correlated with earthquake rate parameters (follow Gutenberg-Richter scaling) (e.g. van der Elst et al., 2016)

If the activity rate for $M \ge 3$ increases, the rate of larger events also increases..... so you will eventually see larger events, but their recurrence rates are low. So most events will be moderate.

Figure shows count of $M \ge 3.5$ in 5year windows in western Canada oil/gas regions in top panel.

Lower panel shows observed Mmax in each window, along with value expected (N=1) for Gutenberg-Richter scaling with b=1.

11

3. Ground Motions

Ground motions from events of **M**4 to 4.5 (compared to GMPE for **M**=4.25)

- Symbols show recorded horizontal-component motions for M4.0 to 4.5, converted to soft rock conditions (B/C), vs. distance (Oklahoma + Alberta)
- Lines show selected ground-motion prediction equations (GMPEs) proposed for induced events, for M=4.25
- Note scatter in data: some motions will be much stronger than median, and may cross damage threshold – especially at close distances

Damage Threshold:

Modified Mercalli Intensity VI considered the lower end of damage (e.g. cracks in walls, chimneys, etc.). MMI=VI corresponds to:

- Peak ground velocity (PGV) of ~10 cm/s (Worden et al., 2012; blasting guidelines)
- Peak ground acceleration (PGA) of ~170 cm/s²

Putting it all together: Simple deterministic approach to hazard mitigation

- Based on well stats, 1/10,000 event is ~M4.5
- Use GMPEs to get PGA, PGV for M4.5 (median plus 1 standard deviation)
- Convert PGA/PGV to MMI (Worden et al., 2012)
- MMI of 6 for scenario 1/10,000 event will be experienced within 6 km of the hypocenter
- So keep operations ~5 km away laterally to preclude MMI>6

Drawbacks: Considers only one scenario; likelihood accounted for only in general way

Better approach to induced-seismicity hazard: -probabilistic seismic hazard analysis that considers hazard contributions from all scenarios

- Consider a large box, 50 km x 50 km, with a site in the middle
- Assume the rate parameters from Ghofrani&Atkinson, 2016 statistical study (with b-value of 1, and distribution of Mmax from 5.0 to 6.5) – similar to Fox Creek rates
- Use EQHaz (Assatourians and Atkinson, 2013) to simulate earthquake catalogues that could be realized over many trials (Monte Carlo)
- Two alternative ground-motion models that appear to be applicable to induced events

Simulated Catalogues: random 100 year snapshots - does not look very troubling.....

Distance from site (km)

Simulated Catalogues: random 10,000 year snapshots -for 1/10,000 p.a., we need to withstand the largest ground motion from among these

tance from site

Simulated Catalogues: 100 catalogues of 10,000 years

-for 1/10,000 p.a. we need to withstand the 100th largest ground motion

Distance from site (km)

Ground motions generated from all 100 catalogues of 10,000 years (including variability):

 if our goal is to have no greater than 1/10,000 p.a. chance of exceeding damage threshold (MMI=VI), we need to have no more than 100 exceedences of black line... in our 100 x 10,000yr catalogues

Lower plot shows effect of:

- exclusion distance only (dashed line)

- combination of exclusion distance plus a protocol to limit the rate of events, from the edge of the exclusion zone to a distance of 25 km (to <2 events of **M**>2 per annum)

MMI from PSHA (100 catalogs of 10,000 years, 0.03 rate parameter)

Importance of a real-time monitoring and response protocol

- Exclusion zones alone may not be sufficient to provide sufficiently-low probabilities to satisfy critical facility requirements, because contributions from beyond that zone are important
- Regional monitoring in the 5km to 25 km radius is needed to determine regional rate parameters and fine-tune mitigation strategies
- Develop an appropriate response protocol (i.e. if the annual rate of induced M>2 in the zone from 5 to 25 km exceeds 1, adjust operations to obtain a reduced activity rate)

Conclusions:

- Likelihood of strong ground motion needs to be kept to very low values (<1/10,000 p.a.) for critical facilities.
- Hazard for critical structures can be mitigated through:
 - 1- exclusion zone aimed at eliminating threats from moderate nearby events (~5 km laterally)
 - 2- monitoring and response protocol to limit rate of events beyond the exclusion zone (to a rate of <2 induced events of M>2 per year, in the radius from 5 km to 25 km).

Thanks for your attention Questions?

"We know how to start earthquakes, but we are still far from being able to keep them under control"

> Jean-Philippe Avouac, *California Institute of Technology* Photo: Eugene Richards, National Geograp