

Limits on detection and analysis of (induced) earthquakes

Grzegorz Kwiatek^{1,2} Yehuda Ben-Zion³, Katrin Plenkers⁴

- 1. Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
- 2. Free University Berlin, Berlin, Germany
- 3. University of Southern California, Los Angeles, USA
- 4. GmuG mbH, Bad Neuheim, Germany

Detection and analysis of small seismic events

- HR monitoring allows for better understanding of seismo-mechanical processes occuring in geo-reservoirs.
- Linking field studies with laboratory experiments.

Understanding physics of earthquakes across scales.

Development of in-situ geo-labs to study induced seismicity.

• Detection limits in various conditions not well established for small earthquakes.

100km-scalekm-scalem-scalemm-scaleImage: StarsImage: Stars<

Outline

- Seismic monitoring at very small (fault) scales.
- Modelling theoretical limits to detection and reliable assessment of source properties.
- Case study: Hydraulic fracturing monitoring.
- Summary and conclusions.

Starting point: Monitoring target

- Know source properties of earthquakes that are your monitoring target:
 - length scale (target fault sizes)
 - rupture dynamics (slow/fast earthquakes)

modified after: Kwiatek et al., BSSA, 2011; see also: Bohnhoff et al., System Erde, 2016

Starting point: Monitoring target

modified after: Kwiatek et al., BSSA, 2011; see also: Bohnhoff et al., System Erde, 2016

Starting point: Hardware

• "15-Hz phone is enough" – not really for in-situ labs

- Hardware limitations: lack of sensitivity, low sampling rate, inappropriate sensors
- It's virtually impossible to monitor in full frequency range
 - Bad acquisition has potential serious implications for integretation

sensors' pictures: www, K. Plenkers

Static

drop

Monitoring in cm- to 100m- scale: JAGUARS project (2007-2009)

- Mponeng deep gold mine, South Africa.
- Source physics experiment

Source radius [m]

Corner frequency [Hz]

Moment magnitude

https://induced.pl/jaguars

Merry Christmas earthquake 2007.12.27 M_w2.1 case

- Local mine network (geophones) located 6 aftershocks.
- Most of EQs outside of frequency band of geophone network ▶ no gain from close-by geophones!

Merry Christmas earthquake 2007.12.27 M_w2.1 case

- Nearly 30,000 aftershocks recorded by JAGUARS network (-5.5 < M_w < -0.8)
- Allowed to link observations from lab experiments to seismicity in-situ
- Appropriate sensor installation key element of HF monitoring success.

https://induced.pl/jaguars

10⁵

10⁻²

Source radius [m]

Corner frequency [Hz]

Moment magnitude

Plenkers, Kwiatek et al. SRL, 2010; Plenkers et al., BSSA, 2011

 10^{4}

 10^{-1}

5

10²

 10^{1}

 10^{3}

 10^{0}

In-situ detection limits for ultra-small events

Plenkers, Kwiatek et al. SRL, 2010; Plenkers et al., BSSA, 2011

Monitoring hydraulic stimulation in dm-scale (NOVA)

- "Soft stimulation" in Äspö underground laboratory, Sweden (depth 400 m)
- Monitoring with multiple networks:
 - Fracturing processes: 11 AE sensors and 4 accelerometers @ 1MHz sampling rate.
 - Slow processes and large events: additional geophones/broadbands.

Monitoring hydraulic stimulation in dm-scale (NOVA)

- Real time fracture propagation: $M_{\rm W}$ -4.2 to -3.5 eqs.
- Thousands eqs. template matching post-processsing.
- Slow tensile opening detected by broadband sensors.

Learning curve...

- High attenuation at low confining stresses is really an issue for detecting small events, even at this extremely close distances.
- In this scale information on rock mass is essential (e.g. water-bearing layers).

Kwiatek et al., JGR, 2018; see also: Zang et al., GJI, 2017, López-Comino et al., IJRMMS, 2017

Monitoring hydraulic stimulation in dm-scale (STIMTEC)

- Testing different hydraulic stimulations concept (Freiberg, Germany, 200 m depth).
- Acoustic emission + acceleromenters + broadband sensor used.
- Careful network design and site scanning (damage zone identification, signal transmission testing at different frequencies).

Initial AE data: K. Plenkers,

Modelling limits for detection

- Detection limits in various source/path/instrumental effects not well established, especially for very small events
- Improve understanding of theoretical limits to detection of (small) seismic events.
- Clarify limitations for reliable derivation of source characteristics.

Forward modelling scheme

Source modelling

- Rupture process described by M_0 , $\Delta\sigma$, and V_R .
- Rupture propagates radially with constant V_R and stops abruptly
- Radiation pattern: **pure shear** and pure tensile failure, **P-** and S- waves considered

Path effects modelling

- Attenuation: Frequency-independent attenuation operator.
- Geometrical spreading: 1/R factor

Noise and sensor characteristics modelling

- Low-freq. noise from Peterson (1993)
- High-freq. noise from empirical data

 Popular broadband and short-period sensors used

Synthetic detection limits

• Sample detection limits using *P*-waves, GS11D sensor, $\Delta \sigma = 1$ MPa and $V_R = 0.9V_S$

Synthetic detection limits (overview)

P-wave | Sensor GS11D | Shear source

Detection limits for different source, path and sensor characteristics are in supplementary materials of *Kwiatek and Ben-Zion, JGR, 2016*

Synthetic frequency content limits

• High frequencies suppressed due to attenuation

(P-waves, $\Delta \sigma = 1$ MPa, $V_R = 0.9 V_S$)

Validation: Comparison with empirical data

Case study: Ground motions simulations

- Ground motion simulation for Southern California
- Source kinematics influence visibly ground motions at short source-receiver distances

From Kwiatek and Ben-Zion, in preparation

Case study: Detection limits in hydraulic stimulation campaign

- Target reservoir at depth of 6km
- Relatively simple geological situation
- Seismic network: shallow borehole geophones (4.5Hz) and borehole sensors (15Hz) at a depth of ~2.0 km
- Target: TLS, Tracking fracture network development

Kwiatek et al., in prep., 2018

Courtesy of fastloc GmbH

Case study: Detection limits in hydraulic stimulation campaign

Actions:

- Reduce lateral station distances to the injection well head
- Modify sampling rates to fit better the expected frequency band

Kwiatek et al., in prep., 2018

Courtesy of fastloc GmbH

Case study: Detection limits in hydraulic stimulation campaign

Kwiatek et al., in prep., 2018

Summary and Conclusions

- Analysis of small earthquakes important bridging the gap between lab and field studies.
- Successul outcome of monitoring at high frequencies strongly related to expertise of people involved in the project.
- The expertise is scarce wrt demands. We do not communicate enough!
- Monitoring of induced seismicity on small fractures/faults sometimes requires different types of sensors.
- Acquisition system characteristics seriously affect the detection and ability to analyze source properties for very small earthquakes.
- Amplitude and frequency content of waves from small sources is predominantly controlled by M_W and $\Delta \sigma$ with minor influence of rupture velocity, earthquake kinematics, directivity.
- Distance and attenuation key not-acquisition-related limiting factors for EQ detectability and analysis of source properties of very small earthquakes.

Magnitude -3

A cat knocking your cell phone off your nightstand

Thank you! Questions?

contact: kwiatek@gfz-potsdam.de

https://induced.pl/about

See also:

Kwiatek, G., and Y. Ben-Zion (2016). Theoretical limits on detection and analysis of small earthquakes, *JGR-Solid Earth* **121**.

Kwiatek, G., P. Martínez-Garzón, et al. (2018). Insights Into Complex Subdecimeter Fracturing Processes Occurring During a Water Injection Experiment at Depth in Äspö Hard Rock Laboratory, Sweden. *JGR-Solid Earth* **123**

