

Review of Management of Induced Seismicity

Todd Shipman, PhD and Ryan Schultz Alberta Geological Survey October 26th, 2018

Risk Management Approach to Induced Seismicity

Establishing the Context:	Risk Identification	Risk Analysis	Risk Evaluation	Risk Treatment
potential outcomes	Where is induced	If an geological		
(negative or positive)	seismicity occurring?	association, then;	Evaluation of risk	Decisions: develop
seismicity?	What are the	distribution of	map, common risk	for management
	interaction that could	susceptibility?	framework, bounded	with
-satety to people	lead to induced	If an operational	by acceptable risk.	allowances/threshold
and imastructure, groudwater impacts.	condition or	association, then:		S/avoluarice areas
social	operations behavior.	What parameter is		Compliance:
perception/security,	What are the best	most associated with		monitoring and
What can be	predictors of induced	inggered events?	i keliho	improved reporting
tolerated by induced earthquakes?	seismicity?	How should this be mitigated?	Consequence	Policy for long term planning.
whole: why:				

Risk Treatment

Process to modify risk. Can involve avoiding the risk, taking or increasing the risk in order to pursue an opportunity; removing the risk source, changing the likelihood; changing the consequences, sharing the risk with another party or parties, and retaining the risk by informed decision

Risk Treatment

Reactive

Proactive

Forecast

Suspend Op Modify Opera Normal Oper

Reactive Risk Treatment

- D Risk treatments that allow for non-damaging induced seismic events to occur with a threshold based zone of enforcement
- React to these with mitigation that allows the reduce the risk.

Typical Traffic Light Protocol

Subsurface Order #2, Traffic Light Protocol for Induced Seismicity

February 2015

Alberta Energy Regulator

- Issued February 19, 2015
- Applies to hydraulic fracturing operations in Duvernay Zone in Fox Creek area
- Requires an assessment of induced seismicity, a plan to respond to induced seismicity, and seismic monitoring

Uses a Traffic Light Protocol for response to seismic events

AER's Subsurface Order No. 2

HF Operations near Fox Creek

After Schultz et al.,2018

BCOGC's Ground Motion Regulations

Risk Treatment

Reactive

Proactive

Forecast

Suspend Operations Modify Operations Normal Operations

Proactive Risk Treatment

- Risk treatments prevent risky activity through avoidance.
- This includes mitigation of operational behavior, avoidance of susceptible areas, and/or setbacks

What options are there for managing the risk for induced seismicity?

> Avoidance

- Geological susceptibility- effective stress, structures
- Infrastructure-measured ground motion, distance activity, PSHA, Shake Maps
- Moratorium
 - Activity driven- disposal, conventional extraction, HF
 - Depth driven- prevent all operations near formations that are known to cause IS
 - Location driven- near susceptible areas, such as faults, zone where induced seismicity is more likely

Induced Seismicity Near Critical Infrastructure

Area of restricted oil and gas development

Resources under application

Well

Site-specific mitigation strategy, traffic light, etc. to restrict potentially damaging ground motion from any susceptible play

Radius of monitoring and reporting

Radius of TLP w/ modifications

Seismic Susceptibility

Are there other underlying geological factors which we can correlate to induced seismicity?

Geological Predictors

- Faults/Reef Edges
- Formations of Interest, including influence of temp and pressure (present/not present)
- Dolomite occurrence
- Li and Sr concentrations (indication of basement involvement)
- Pressure and Stress data
- Natural earthquake occurrence
- Basement structure

Duvernay Formation

Geospatial Association

Geological features may be used to infer areas with faults that could be prone to reactivation; seismic events near Fox Creek and central Alberta follow a trend along an ancient fossil reef (Schultz et al., 2016)

Susceptibility Modeling

Risk Treatment

Reactive

Proactive

Forecast

Suspend Operations Modify Operations Normal Operations

Forecasted Risk Treatment

- Risk treatments that forecast the risk in order to mitigate it.
- This is a combination of a reactive and proactive treatment, which allows for activity in high risk areas and reacts to change in risk in order to avoid any damaging induced seismicity

Risk Management Approach to Induced Seismicity

Establishing the Context:	Risk Identification	Risk Analysis	Risk Evaluation	Risk Treatment
what are the	Whore is induced	If an goalagical		
(pogotivo or pogitivo)	where is induced		Evoluction of rick	Decisions: develop
(negative of positive)	seismicity occurring?	What is the regional	Evaluation of fisk	regional strategies
	What are the	distribution of	with using a neat	for monogement
Seismicity?	interaction that could	distribution of	framowork bounded	with
cafaty to pooplo	load to induced	Susceptionity?	hy acceptable rick	with allowancos/thrashold
-salely to people	soismicity? Goologic	If an operational	by acceptable lisk.	s/avoidance areas
anu initastructure, aroudwator impacto	seismicity? Geologic			S/avoluatice ateas
grouuwater impacts,		What parameter is		Complianco:
social	operations benavior.	most associated with		monitoring and
economic realities	What are the hest	triggered events?		improved reporting
What can be	predictors of induced	inggered events:		improved reporting
tolerated by induced	seismicity?	How should this be		Policy for long term
earthquakes?	Selonieity:	mitigated?		nlanning
Where? Why?		miligatou :	Consequence	plaining.
Where Why !				

Thank you

